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ABSTRACT 

This position paper explores two socio-technical gaps that 

hamper effective synergy between human and machine 

intelligence as well as data-intensive and cognitively 

complex sense making and decision making in early U.S. e-

science projects. Based on qualitative methods guided by 

grounded theory and 70 interviews, we identify limiting 

constraints at the levels of scientists, technologists, science 

funders, and technology quality, under the participatory and 

bespoke natures of cyberinfrastructure. More specifically, 

scientists cannot fully envision the new computational tools 

they need for their science (i.e., human intelligence in 

domain science), and technologists have limited knowledge 

of the domain science they are building 

cyberinfrastructure/computational tools for (i.e., 

representing the machine intelligence built into 

computational tools). Furthermore, science funders offer 

limited direct funding for cyberinfrastructure development, 

and this development is time consuming and it produces 

unstable software (i.e., thus affecting the quality and 

development of machine intelligence). A closer 

examination of these key limitations led to the identification 

of two gaps: the specialization-synergy gap between 

scientists and technologists, as well as the science 

investment-technology quality gap between funders and 

development. We argue that these two gaps hamper the 

effective cognitively-complex sense making and decision 

making in data-intensive e-science projects.  

Author Keywords 

Cyberinfrastructure; e-science; participatory and bespoke 

natures of cyberinfrastructure; socio-technical gaps. 

ACM Classification Keywords 

K.4.3 [Organizational Impacts]—Computer-supported 

collaborative work, H.5.3 [Group and Organization 

Interfaces]—Organizational design, Computer-supported 

cooperative work. 

INTRODUCTION 

The grand vision of cyberinfrastructure (CI) is to enable 

large-scale research using aggregated computational 

resources and combined datasets through the Internet, high-

performance networks, and local machines and to be able to 

mine publicly-funded datasets accumulated over time. Data 

intensiveness is a key defining characteristic of CI and e-

science projects [1]. When the grand vision described is 

achieved, there will be increased productivity and 

breakthrough discoveries in research. However, like most 

innovations, an ambitious endeavor such as CI 

implementation for data-intensive collaboration and 

computational simulation often encounters challenging 

conditions in the general environment. In this paper, we 

explore two socio-technical gaps that present challenging 

conditions to the synergy between domain scientists (i.e., 

the key human actants in e-science projects) as well as 

computational technologists (i.e., whose logic, algorithm, 

and design become of the machine intelligence for e-

science) and science funders (i.e., whose funding 

determines the quality of CI development). As a preview, 

the two gaps are the specialization-synergy gap and the 

science investment-technology quality gap. These gaps 

stemmed from the participatory and bespoke natures of CI. 

 

PARTICIPATORY AND BESPOKE NATURES OF 
CYBERINFRASTRUCTURE 

This paper examines CI development and implementation 

for data-intensive collaboration and computational 

simulation among pioneering scientists, particularly those 

who work with computational technologists to develop new 

CI tools. This group of pioneering scientists adopts CI at 

the conceptual level and gives it meaning when they submit 

a grant proposal (often jointly with computational 

technologists). Once funded, they work with technologists 

to co-produce CI tools that do not yet exist. In other words, 

pioneering scientists adopt CI as a possibility, not as a fully 

developed tool in the physical sense. This participatory 
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characteristic of CI makes it a unique case for studying 

innovation implementation. [Note: a separate paper 

focusing on scientists who develop their own CI tools and 

scientists who adopt existing tools has been submitted to 

W2: Data-Intensive Collaboration in Science and 

Engineering]. 
 

In CI co-production, a scientist presents a scientific 

problem and a technologist explores ways to create a tool to 

help investigate it. A CI project manager in Indiana 

explains, “We [technologists] have to understand enough of 

their [scientists’] problem to be able to understand 

ourselves where computers can help. And then do the best 

we can to explain that to them [scientists] and give them 

options”. This is a critical process that this project manager 

repeated during the same interview, “I can’t do my work 

unless the domain scientist is willing to take the time to 

explain necessary things to me. The domain scientists can’t 

do their work unless I can build them the right tools”. 

Therefore, CI co-production is often driven by a problem 

within a particular scientific context and domain. 

Furthermore, because the research is also primarily defined 

by the scientist, the tool produced is based on the approach 

(i.e., theory, measurements, methodology, etc.) employed 

by him or her. Hence, Kee and colleagues describe CI as a 

bespoke innovation [4]. 

 

DATA COLLECTION AND METHOD 

We conducted interviews over a period of 32 months, from 

November 2007 to June 2010. The data set includes 70 

interviews with 66 participants from across 17 U.S. states 

and three other countries. The interviews were spread 

across four years with 10 participants in 2007, 42 in 2008, 

16 in 2009, and two in 2010. Because most of the 

interviews were conducted in 2008, the analysis primarily 

reflects CI development and implementation for data-

intensive collaboration and computational simulation 

during this period. The shortest interview was 15 minutes 

and the longest was 2 hours and 16 minutes. The interviews 

averaged approximately one hour each and were conducted 

in person with 19 of the participants and over the phone 

with the remaining 51 participants. All the interviews were 

audio recorded except for two, due to technical difficulty 

and following one participant’s request. However, notes 

were taken immediately after these two interviews. 

 

The 66 interview participants came from Texas (12), 

Illinois (11), California (10), Michigan (5), Indiana (4), 

Massachusetts ( 3), Arizona (2), Colorado (2), Louisiana 

(2), Washington (2), DC (1), Maryland (1), New York (1), 

Virginia (1), Ohio (1), Pennsylvania (1), Delaware (1), as 

well as Australia (2), Germany (1), and the UK (1). The 

geographic affiliations refer to the primary locations of the 

participants at the time of the interviews. Participants 

include 52 males and 14 females. Participants’ primary 

professional roles were diverse, including domain scientists 

who used CI to conduct science (15), computational 

technologists who built CI (12), a range of administrative 

directors and program managers at supercomputer centers 

and national research laboratories across the country (21), 

US NSF program officers who helped allocate funding to 

CI projects (4), social scientists and policy analysts who 

studied and participated in CI projects (12), and experts 

from commercial industry (2).  

 

This paper employs grounded theory in qualitative data 

collection and analysis. According to Corbin and Strauss, 

one of the main goals of grounded theory is to  seek to 

uncover relevant conditions under which social phenomena 

manifest [2]. We argue in this paper that the relevant 

conditions for the two socio-technical gaps are the 

participatory and bespoke natures of cyberinfrastructure and 

e-science projects discussed earlier. 

THE TWO SOCIO-TECHNICAL GAPS 

The two gaps identified in this paper are socio-technical in 

nature because they manifest during the interactions 

between the main social actants (i.e., the domain scientists 

as primary users) and the technical tools (i.e., the logic, 

algorithm, design, quality, etc., resulted from computational 

technologists and science funders). These two gaps hamper 

effective synergy between human and machine intelligence, 

in which we also argue that machine intelligence is the 

result of other key social actants, such as computational 

technologists and science funders. The next paragraph 

begins with describing the first gap. 

Specialization and Synergy Gap 

There is a critical gap between participating in the co-

production process as specialists and the need to achieve 

synergy under the time constraint of a funded e-science 

project. In this paper, this socio-technical gap is referred to 

as the specialization-synergy gap. As CI is a participatory 

innovation, the first part of this gap involves specialists 

building CI/computational tools. CI tool development is 

driven by a scientific problem pursued by domain scientists 

(as users of the tool). Therefore, the development process 

requires the participation of specialized scientific experts in 

the domain. On the other hand, a CI tool is a piece of 

technology that cannot be bought off-the-shelf 

commercially. Its production requires specialized 

technologists who are skilled at high-performance, 

distributed, and parallel computing techniques and 

knowledge. Their techniques and knowledge are then built 

into the fundamental logic and design of the machine 

intelligence, which interacts with domain scientists during 

CI development and implementation for data-intensive 

collaboration and computational simulation. One often has 

to focus on a very narrowly defined area of knowledge in 

order to become a specialist in domain science, computing 

techniques, etc.  

 

The second part of the gap is the need for synergy because 

CI is a bespoke innovation custom-made for specific 



 

scientific problems. Synergy can be defined as the process 

or mechanism that enables collaborative advantages [6] 

among diverse specialists and participants. In order to 

achieve synergy among specialists, there needs to be a 

common language, shared understanding of basic concepts, 

motivation to learn, and the ability to see the outcome, all 

of which is impossible without synergy. However, it takes 

time for these four elements to fully develop before true 

synergy can positively impact CI co-production. As these 

elements cannot fully develop when projects are funded for 

on a limited time basis, such as a three-year or five-year 

term, the development of CI tools is compromised. The 

analysis continues with examples offered by scientists and 

technologists who have experienced the specialization-

synergy gap. 

 

Scientists. A scientist’s ability to envision what is possible 

for a CI tool is limited by his/her ability to see the outcome, 

and this is impossible without synergy. More specifically, it 

is difficult for them to recognize and articulate their needs. 

These are new needs yet to be clearly defined for new CI 

tools. Because pioneering scientists are in the stage of 

prototyping tools, co-production becomes an experimental 

process in which scientists try to determine what is even 

possible. In other words, co-production can be interpreted 

as setting an agenda for cyberinfrastructure and science, 

involving the work to “define what cyberinfrastructure 

should be” (see interview quote below). A pioneering 

cyberinfrastructure adopter and a water resources 

engineering professor at Illinois shares her co-production 

experience working with a leading supercomputer center in 

the country, “I’ve been… trying to figure out what they 

are,… working with [the center] to try to understand the 

cyberinfrastructure needs … We’re… prototyping and 

developing what might be possible,…to define what 

cyberinfrastructure should be and to prototype early 

cyberinfrastructure”. 

 

Pioneering co-production is time-consuming because the 

exploratory process requires working closely together often 

in face-to-face interactions. Lee and Bietz argue, “[m]ost 

scientists [are] reluctant to invest more than a very small 

amount of time to learn to use new technologies unless the 

benefits [are] substantial and related directly to their 

research” [5, p. 3]. A big part of this limitation experienced 

by scientists could be the result of not knowing enough 

about computational science to envision the potential. 

Therefore, the co-production is an exploratory process 

“trying to sort of make a match” between the needs to be 

discovered and the tools to be developed. A social scientist 

in Michigan observes, “It is time-consuming… They 

[technologists and scientists] really work closely… face-to-

face to try to… make a match in a way between their 

[scientists’] needs, needs that they don’t really know they 

have yet… so that they can do different things with their 

science. This quote implies that scientists often do not enter 

into co-production with a clear design, product, and 

outcome in mind; they explore and figure out the tool with 

technologists in a time-consuming process. 

 

These excerpts reveal that scientists often experience 

difficulties in envisioning new CI tools for their science. 

This difficulty comes from not fully knowing what is 

possible for their science, and not fully knowing their needs 

yet. Therefore, CI tools remain in the prototype stage, and 

co-production is very time intensive. Technologists also 

experience challenges in specialization-synergy gap. 

 

Technologists. While scientists are constrained by their 

ability to articulate clear needs and envision what is 

possible, technologists appear to be limited by their 

knowledge of domain science and their lack of motivation 

to acquire it quickly. It is understandable that most 

technologists (as specialists in computer science and 

computational techniques) do not often speak the language 

and understand the basic concepts of science. However, not 

having enough scientific knowledge can lead to developing 

tools that do not match the scientific problems to be 

investigated. Furthermore, acquiring the necessary language 

and concepts for synergistic communication and 

participating in ongoing communication both take a lot of 

time. A technologist in Indiana explains, “We speak 

different languages. It’s very easy for the [technologists] to 

do something that turns out to be nonsensical because we 

don’t understand the science… The domain scientists get 

frustrated… because [they] don’t necessarily understand the 

complexity involved in it”. 

 

The challenge of having technologists who are unfamiliar 

with the science is that the co-production process often 

requires repetition of cycles and revisiting the design. As 

technologists acquire scientific knowledge in the process, 

they often need to re-work some early recommendations 

and/or parts previously built. The result is a delay and slow 

progress in CI projects. Moreover, the learning process can 

be impaired or hampered if technologists are not personally 

interested in or motivated by the field of science because 

their participation in the co-production process is short-term 

and they do not actually work under their scientist 

counterparts. A geochemist in New York reflects on her 

experience, “You had to go back many times… they said – 

Oh, if this is that way, then we cannot do it here…. They 

were not really that motivated and that enthusiastic about 

learning it. It was just part of the work”.   

 

These quotes about the technologists explain that they often 

do not possess either the language or the concepts of the 

science they are building tools to address. It becomes more 

challenging if technologists are not personally motivated to 

learn the science. Because their participation is often on a 

short-term basis and many of them do not work long-term 

and full-time for the scientists and/or in the field of science 

they temporarily serve, the specialization-synergy gap is 

likely to persist. 



 

Due to the early stage of CI prototyping, co-production is 

very time-consuming because of the specialization-synergy 

gap demonstrated. Because CI implementation implies co-

producing and prototyping CI tools with technologists, 

implementation can negatively impact a scientist’s research 

productivity, which requires cognitively-complex sense 

making and decision making.  

 

The specialization-synergy gap is a critical challenge for CI 

implementation because it compromises the CI tools 

developed to explore important scientific problems and 

grand challenges. It also has a detrimental impact on the 

research productivity of the pioneering adopters.  

Science Investment-Technology Quality Gap 

The second gap, the science investment-technology quality 

gap, involves funding patterns and software developments 

in co-production. Kee and Browning argue that as CI is a 

participatory and bespoke innovation, successful 

implementation is often impeded by a gap between science 

funding and software development [3]. This often leads to 

negative impacts for this generation of scientists who are 

ushering in the cyberinfrastructure vision.  

 

Science Funders. The first part of the gap, science 

investment, represents a funding condition under which CI 

has emerged. However, the investment pattern to fund 

science also represents two important challenging 

conditions for CI development and implementation for 

data-intensive collaboration and computational simulation. 

The first challenge is that there is not a dedicated public 

funding source for long-term and sustainable software 

development to support CI development. Funders, such as 

NSF, are set up to fund science, and limited on flexibility to 

fund technology. Because there is not a ‘National 

Technology Foundation’, software development for CI is 

often compromised. 

 

The second challenge is that there is limited long-term 

outlook for most science (and e-science) projects funded by 

agencies such as NSF. A technologist from Indiana states, 

“Governments tend not to pour money into areas more than 

five or at most 10 years… Often NSF will fund the initial 

steps, but not the long-term sustainability”. Due to these 

two challenging conditions, the lack of direct and stable 

funding for software development and the lack of long-term 

funding for projects, CI development, adoption, 

implementation for data-intensive collaboration and 

computational simulation based on short-term funding for 

science creates a challenge for quality tools. 

 

In the short-term and science-oriented funding 

environment, software development for CI is often assumed 

to be free and/or a part of a science project that does not 

require direct financial support. A senior administrator who 

retired from a major university in California shares, “The 

instability of the software is due to… [people who] make 

funding decisions just don’t think of software as something 

requiring a big long-term ongoing investment. It’s nice to 

think of it as somehow being free… [it] gets created and 

maintains itself”. This is an inherent challenge when CI is a 

bespoke innovation based on specific scientific problems to 

be funded by federal agencies. 

 

NSF funds projects that rely on open source platforms and 

CI users often turn to open source software as the primary 

preference for software development under these funding 

conditions. The rationale is that the software will be created 

as part of the process of science and that the scientific 

community will maintain it as a public good. As a project 

manager in California explains, “Most of the organizations 

the NSF is involved with are using open source.  [It] is 

more a part of cyberinfrastructure than Windows 

technology… They appear to be less expensive because you 

don’t have to pay for the software licensing”. However, 

relying on open source software development also 

encounters challenges that will be discussed next.  

 

Technological Developments. The first challenge in the 

area of CI software development is the dependence on open 

source platforms. While these are free and the open source 

philosophy also sits well with academics, it does not have 

many pre-determined and standard solutions to known 

problems (i.e., turnkey solutions) to speed development. 

This disadvantage poses a challenge to timely technological 

development. The project manager in California quoted 

earlier continues, “Our project didn’t come in on time 

because instead of using…open source software, we should 

have migrated to Windows technology. We would have had 

more turnkey solutions that… the existing team could have 

produced software more quickly”. In the same interview he 

continues to explain that using open source software also 

requires more programmers due to the same limitation of a 

lack of turnkey solutions. While the open source approach 

has its inherent benefits, including pooling a wide range of 

ideas, knowledge, and expertise [8] and organizing beyond 

traditional boundaries [9], the organic and emergent nature 

of an open source approach cannot always guarantee 

effective outcomes under critical time pressure. 

 

The second challenge under the current funding condition is 

that software development is both rushed and unstable. As 

previously discussed, there is no long-term funding for 

software development. Funded scientists and technologists 

have to reapply for funding in order to sustain a CI and e-

science project. To secure the next round of funding, 

sometimes there is a need to rush through the development 

process. A technologist and a professor of computer science 

in Louisiana states, “There’s so much to do and there’s a 

tendency to rush the job, try and get systems into place, try 

to get scientists using them… before they’re really ready to 

be used because of the pressure to have continued funding”. 

This pattern affects technology quality. 

 



 

The third challenge that results from the funding conditions 

is that software development can hinder scientific 

investigation since the tools are neither robust nor fully 

developed when applied. In other words, the science that 

was originally funded can be compromised when the tools 

that were supposed to enable the research investigation are 

actually experimental tools being prototyped in the process 

of serious research. Therefore, both technological 

development and the scientific research will be 

compromised. A technologist at a commercial software 

company in Washington shares a compelling argument that 

illuminates this problem: 

We saw too many projects in the past that – where 

experimenting with technology at the expense of 

helping scientists do science. So cyberinfrastructure 

should be… services and technologies and computing-

related infrastructure that just work… That, to me, is 

the critical factor of a success…. It shouldn’t get in the 

way [of science]…. Cyberinfrastructure really has to 

not get in the way... [Cyberinfrastructure projects] have 

tried to come up with new ideas while being applied 

during [e-science]… Those new ways should not be 

part of a science-related project or a new scientist-

created project. Those should be on their own. Only 

when they prove themselves, then we can apply them 

to e-science… The same way that the industry will not 

use experimental methods in order to do critical 

business tasks, in the same way, we shouldn’t be using 

experimental methods to do critical to science tasks.  

 

This excerpt reveals the unfortunate outcomes of many 

cyberinfrastructure co-production efforts, thus the actual 

implementation of CI tools and data-intensive 

collaboration. Since scientists adopt cyberinfrastructure at 

the conceptual level before the tools exist, efforts to bring 

forth cyberinfrastructure compromises the science the 

technology was supposed to serve. This is a direct outcome 

of cyberinfrastructure being a participatory and bespoke 

innovation. Scientists have to be active participants of the 

development of the CI tools they have adopted 

conceptually. The science investment-technology quality 

gap is the result of CI development being dependent on 

short-term funding for science and the CI tools being 

developed in the middle of a serious research project.  

 

CONCLUSION 

The co-production process of CI/computational tools for 

data-intensive collaboration and computational simulation 

often involves exploration of what is possible, an attempt to 

match an emerging need with technological development, 

learning of the science, iterative cycles, finding solutions of 

open source software developments, and working on a 

limited short-term budget for science, and producing 

unstable tools that face the possibility of no sustaining NSF 

funding or community support. The participatory and 

bespoke natures of cyberinfrastructure hampers effective 

cognitively complex sense making and decision making for 

important scientific endeavors. The specialization-synergy 

gap and the science investment-technology quality gap 

complicate the process.  

 

We argue that while examining the synergy between human 

and machine intelligence in CI, e-science, data-intensive 

collaboration, and computational simulation,  it is important 

to recognize the role of computational technologists and 

science funders as they impact the logic and design 

CI/computational tools, which represent the material actants 

that interact with domain scientists during data-intensive 

collaboration and computational simulation. 
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